A Solar to Chemical Strategy: Green Hydrogen as a Means, Not an End

Author:

Diab Gabriel A. A.1,da Silva Marcos A. R.1,Rocha Guilherme F. S. R.1,Noleto Luis F. G.1,Rogolino Andrea2,de Mesquita João P.13,Jiménez‐Calvo Pablo45,Teixeira Ivo F.1ORCID

Affiliation:

1. Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP São Carlos SP 13565‐905 Brazil

2. Cavendish Laboratory University of Cambridge Cambridge CB3 0HE UK

3. Departamento de Química Universidade Federal dos Vales Jequitinhonha e Mucuri Rodovia MGT 367 – Km 583, n° 5000, Alto da Jacuba Diamantina MG 39100 Brazil

4. Department for Materials Sciences Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Martensstrasse 7 D‐91058 Erlangen Germany

5. Chemistry of Thin Film Materials Friedrich‐Alexander‐Universität Erlangen‐Nürnberg IZNF, Cauerstraße 3 D‐91058 Erlangen Germany

Abstract

AbstractGreen hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO2 emissions, with half of it coming from the production of simple commodity chemicals, such as NH3, H2O2, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H2 by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar‐to‐chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH3, H2O2, and chemicals produced by reduction reactions. The replacement of fossil‐derived H2 in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low‐carbon economy.

Funder

Max-Planck-Gesellschaft

H2020 Marie Skłodowska-Curie Actions

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Multidisciplinary

Reference199 articles.

1. P. I.Jiménez‐Calvo Synthesis charactherization performance of g‐C3N4 based materials decorated with Au nanoparticles for (photo) catalytic applications. Theoretical and/or physical chemistry. Université de Strasbourg 2019.

2. Photoelectrochemical cells

3. Au/TiO2(P25)-gC3N4 composites with low gC3N4 content enhance TiO2 sensitization for remarkable H2 production from water under visible-light irradiation

4. IEA World Energy Outlook 2023 IEA Paris https://www.iea.org/reports/world‐energy‐outlook‐2023(accessed: Auguest 2023).

5. The Artificial Leaf

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3