Sustainable Production Insight Through LCA and LCC Analysis of Injection Overmolded Structural Electronics Manufactured through Roll‐to‐Roll Processes

Author:

Räikkönen Minna1ORCID,Sokka Laura2ORCID,Hepo‐oja Lotta2ORCID,Nordman Sirpa3,Kraft Thomas M.3ORCID

Affiliation:

1. VTT Technical Research Centre of Finland Ltd Visiokatu 4, P.O. Box 1300 Tampere 33101 Finland

2. VTT Technical Research Centre of Finland Ltd Tekniikantie 21, P.O. Box 1000 Espoo 02044 VTT Finland

3. VTT Technical Research Centre of Finland Ltd Kaitoväylä 1, P.O. Box 1100 Oulu 90590 Finland

Abstract

AbstractPrinted electronics (PE) have provided new material and application opportunities for devices and systems as well as new manufacturing routes that all need to be considered for commercialization. This paper introduces a case study with universally relevant manufacturing processes and applications in the PE area, focusing on the Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) of the Personal Activity Monitor (PAM) device. In the study, the PAM device's most important costs and environmental impacts during the prototype pilot production and device use phases are identified and assessed. Additionally, the potential environmental impacts of post‐consumption scenarios are considered. The LCA results indicate that the roll‐to‐roll (R2R) assembly of electronics and the R2R injection over‐molding are generally the most prominent production process steps affecting the results. From the LCC perspective, the capitial expenditure (CAPEX) contributor is the R2R assembly pilot line, due to its high investment cost and long operating time compare to other production assets. The traditional electronic components are the major operating expenditures (OPEX), especially the microcontroller units (MCUs) and accelerometers, in contrast to the low impact from the printed electronics. There are several advantages to applying LCA and LCC since they provide explanations of the relationships between cost, environmental, design, and manufacturing characteristics.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3