Highly Selective Aptamer‐Molecularly Imprinted Polymer Hybrids for Recognition of SARS‐CoV‐2 Spike Protein Variants

Author:

Sullivan Mark V.1,Allabush Francia23,Flynn Harriet4,Balansethupathy Banushan4,Reed Joseph A.4,Barnes Edward T.4,Robson Callum4,O'Hara Phoebe4,Milburn Laura J.4,Bunka David4,Tolley Arron4,Mendes Paula M.2,Tucker James H. R.3,Turner Nicholas W.1ORCID

Affiliation:

1. Leicester School of Pharmacy De Montfort University The Gateway Leicester LE1 9BH UK

2. School of Chemical Engineering University of Birmingham Edgbaston Birmingham B15 2TT UK

3. School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK

4. The Aptamer Group Windmill House Innovation Way Heslington York, YO10 5BR UK

Abstract

AbstractVirus recognition has been driven to the forefront of molecular recognition research due to the COVID‐19 pandemic. Development of highly sensitive recognition elements, both natural and synthetic is critical to facing such a global issue. However, as viruses mutate, it is possible for their recognition to wane through changes in the target substrate, which can lead to detection avoidance and increased false negatives. Likewise, the ability to detect specific variants is of great interest for clinical analysis of all viruses. Here, a hybrid aptamer‐molecularly imprinted polymer (aptaMIP), that maintains selective recognition for the spike protein template across various mutations, while improving performance over individual aptamer or MIP components (which themselves demonstrate excellent performance). The aptaMIP exhibits an equilibrium dissociation constant of 1.61 nM toward its template which matches or exceeds published examples of imprinting of the spike protein. The work here demonstrates that “fixing” the aptamer within a polymeric scaffold increases its capability to selectivity recognize its original target and points toward a methodology that will allow variant selective molecular recognition with exceptional affinity.

Funder

European Research Council

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3