ALA‐A2 Is a Novel Anticancer Peptide Inspired by Alpha‐Lactalbumin: A Discovery from a Computational Peptide Library, In Silico Anticancer Peptide Screening and In Vitro Experimental Validation

Author:

Lerksuthirat Tassanee1,On‐yam Pasinee23,Chitphuk Sermsiri1,Stitchantrakul Wasana1,Newburg David S.4,Morrow Ardythe L.45,Hongeng Suradej6,Chiangjong Wararat2,Chutipongtanate Somchai24ORCID

Affiliation:

1. Research Center Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok 10400 Thailand

2. Pediatric Translational Research Unit Department of Pediatrics Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok 10400 Thailand

3. Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok 10400 Thailand

4. Division of Epidemiology Department of Environmental and Public Health Sciences University of Cincinnati College of Medicine Cincinnati OH 45267 USA

5. Division of Infectious Diseases Department of Pediatrics Cincinnati Children's Hospital Medical Center University of Cincinnati College of Medicine Cincinnati OH 45267 USA

6. Division of Hematology and Oncology Department of Pediatrics Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok 10400 Thailand

Abstract

AbstractAnticancer peptides (ACPs) are rising as a new strategy for cancer therapy. However, traditional laboratory screening to find and identify novel ACPs from hundreds to thousands of peptides is costly and time consuming. Here, a sequential procedure is applied to identify candidate ACPs from a computer‐generated peptide library inspired by alpha‐lactalbumin, a milk protein with known anticancer properties. A total of 2688 distinct peptides, 5–25 amino acids in length, are generated from alpha‐lactalbumin. In silico ACP screening using the physicochemical and structural filters and three machine learning models lead to the top candidate peptides ALA‐A1 and ALA‐A2. In vitro screening against five human cancer cell lines supports ALA‐A2 as the positive hit. ALA‐A2 selectively kills A549 lung cancer cells in a dose‐dependent manner, with no hemolytic side effects, and acts as a cell penetrating peptide without membranolytic effects. Sequential window acquisition of all theorical fragment ions‐proteomics and functional validation reveal that ALA‐A2 induces autophagy to mediate lung cancer cell death. This approach to identify ALA‐A2 is time and cost‐effective. Further investigations are warranted to elucidate the exact intracellular targets of ALA‐A2. Moreover, these findings support the use of larger computational peptide libraries built upon multiple proteins to further advance ACP research and development.

Publisher

Wiley

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3