Imogolite Nanotubes and Their Permanently Polarized Bifunctional Surfaces for Photocatalytic Hydrogen Production

Author:

Paineau Erwan1ORCID,Teobaldi Gilberto2,Jiménez‐Calvo Pablo3

Affiliation:

1. CNRS Laboratoire de Physique des Solides Université Paris‐Saclay Orsay 91405 France

2. Scientific Computing Department STFC UKRI Rutherford Appleton Laboratory Harwell Campus Didcot OX11 0QX UK

3. Chair of Thin Film Materials IZNF Friedrich‐Alexander‐ Universität Erlangen‐Nürnberg Cauerstraße 3 91058 Erlangen Germany

Abstract

AbstractTo date, imogolite nanotubes (INTs) have been primarily used for environmental applications such as dye and pollutant degradation. However, imogolite's well‐defined porous structure and distinctive electro‐optical properties have prompted interest in the system's potential for energy‐relevant chemical reactions. The imogolite structure leads to a permanent intrawall polarization arising from the presence of bifunctional surfaces at the inner and outer tube walls. Density functional theory simulations suggest such bifunctionality to encompass also spatially separated band edges. Altogether, these elements make INTs appealing candidates for facilitating chemical conversion reactions. Despite their potential, the exploitation of imogolite's features for photocatalysis is at its infancy, thence relatively unexplored. This perspective overviews the basic physical‐chemical and optoelectronical properties of imogolite nanotubes, emphasizing their role as wide bandgap insulator. Imogolite nanotubes have multifaceted properties that could lead to beneficial outcomes in energy‐related applications. This work illustrates two case studies demonstrating a step‐forward on photocatalytic hydrogen production achieved through atomic doping or metal co‐catalyst. INTs exhibit potential in energy conversion and storage, due to their ability to accommodate functions such as enhancing charge separation and influencing the chemical potentials of interacting species. Yet, tapping into potential for energy‐relevant application needs further experimental research, computational, and theoretical analysis.

Funder

H2020 Marie Skłodowska-Curie Actions

Engineering and Physical Sciences Research Council

Institut de physique

Agence Nationale de la Recherche

Publisher

Wiley

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3