Affiliation:
1. Centre for Polymer Science and Technology, Department of Chemistry University of Calicut Malappuram Kerala India
Abstract
AbstractThis work reports on a bio‐based polymer blend comprised of polyvinyl alcohol/cashew gum (PVA/CG) embedded with boehmite nanoparticles to tailor the structural, thermal, mechanical properties, and electrical response. The chemical bonding between boehmite and the PVA/CG blend was confirmed by FTIR. The XRD data showed that the nanocomposite films had distinct peaks of boehmite. The SEM images revealed uniformly dispersed morphology at 5 wt% boehmite. The elemental composition of blend nanocomposites was revealed by the EDX analysis. The thermal stability of the blend increases with increasing boehmite, whereas the glass transition temperature decreases. The highest AC conductivity was achieved for PVA/CG/7 wt% boehmite, which was 4.6 times greater than the pure blend. The frequency and temperature‐dependent dielectric constant, modulus and impedance of all films were examined in conjunction with different nanoparticle loadings. Tensile strength and hardness have improved with the addition of boehmite into the PVA/CG blend whereas the elongation at break slightly decreases. The PVA/CG blend had a tensile strength of 31.17 MPa, which increased to 44.66 MPa when 7 wt% boehmite was added. Therefore, eco‐friendly PVA/CG/boehmite films with good thermal stability, mechanical strength, dielectric constant, and conductivity could be a practical green substitute for flexible electronic, charge storage, and electrochemical devices.
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献