Affiliation:
1. School of Mathematics and Physics The University of Queensland St Lucia Queensland Australia
Abstract
AbstractWe develop an efficient pricing approach for guaranteed minimum withdrawal benefits (GMWBs) with continuous withdrawals under a realistic modeling setting with jump‐diffusions and stochastic interest rate. Utilizing an impulse stochastic control framework, we formulate the no‐arbitrage GMWB pricing problem as a time‐dependent Hamilton‐Jacobi‐Bellman (HJB) Quasi‐Variational Inequality (QVI) having three spatial dimensions with cross derivative terms. Through a novel numerical approach built upon a combination of a semi‐Lagrangian method and the Green's function of an associated linear partial integro‐differential equation, we develop an ‐monotone Fourier pricing method, where is a monotonicity tolerance. Together with a provable strong comparison result for the HJB‐QVI, we mathematically demonstrate convergence of the proposed scheme to the viscosity solution of the HJB‐QVI as . We present a comprehensive study of the impact of simultaneously considering jumps in the subaccount process and stochastic interest rate on the no‐arbitrage prices and fair insurance fees of GMWBs, as well as on the holder's optimal withdrawal behaviors.
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献