A semi‐Lagrangian ε$$ \varepsilon $$‐monotone Fourier method for continuous withdrawal GMWBs under jump‐diffusion with stochastic interest rate

Author:

Lu Yaowen1,Dang Duy‐Minh1ORCID

Affiliation:

1. School of Mathematics and Physics The University of Queensland St Lucia Queensland Australia

Abstract

AbstractWe develop an efficient pricing approach for guaranteed minimum withdrawal benefits (GMWBs) with continuous withdrawals under a realistic modeling setting with jump‐diffusions and stochastic interest rate. Utilizing an impulse stochastic control framework, we formulate the no‐arbitrage GMWB pricing problem as a time‐dependent Hamilton‐Jacobi‐Bellman (HJB) Quasi‐Variational Inequality (QVI) having three spatial dimensions with cross derivative terms. Through a novel numerical approach built upon a combination of a semi‐Lagrangian method and the Green's function of an associated linear partial integro‐differential equation, we develop an ‐monotone Fourier pricing method, where is a monotonicity tolerance. Together with a provable strong comparison result for the HJB‐QVI, we mathematically demonstrate convergence of the proposed scheme to the viscosity solution of the HJB‐QVI as . We present a comprehensive study of the impact of simultaneously considering jumps in the subaccount process and stochastic interest rate on the no‐arbitrage prices and fair insurance fees of GMWBs, as well as on the holder's optimal withdrawal behaviors.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3