Trends of sustainable recycling technology for lithium‐ion batteries: Metal recovery from conventional metallurgical processes to innovative direct recycling

Author:

Dong Yongteng12ORCID,Ji Haocheng2,Wu Xiaoxue12,Zheng Nengzhan2,Wang Junxiong12,Ji Guanjun12,Chen Yuanmao1,Zhou Guangmin2ORCID,Liang Zheng1

Affiliation:

1. Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China

2. Shenzhen Geim Graphene Center Tsinghua‐Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China

Abstract

AbstractThe remarkable market growth of lithium‐ion batteries (LIBs) for various applications has been witnessed in the past two decades. However, as a retirement wave of more and more LIBs approaches, the disposed end‐of‐life batteries represent a growing hazard to ecosystem and human health. Recycling valuable metals from those spent LIBs still remain challenging because the current conventional metallurgical recycling processes involve the emission of toxic gas and waste chemicals as well as intensive energy consumption. These processes are not considered as green recycling approaches that contradict with the principles of carbon neutrality and circular economy embraced by the world. Hence, implementing green and sustainable recycling technologies of spent LIBs, especially for cathode materials, is an urgent need. This review provides a comprehensive understanding and critical evaluation of traditional pyrometallurgy, hydrometallurgy, and state‐of‐the‐art direct recycling for recovering valuable metal materials from the spent LIB cathode. The fundamentals, methods, efficiencies, and feasibility of the three recycling approaches are also assessed. In addition, the recent progress for green innovation of hydrometallurgical and direct recycling processes as well as the potential research tendency for spent LIBs are discussed.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3