A high‐resolution inter‐annual framework for exploring hydrological drivers of large wood dynamics

Author:

Hortobágyi Borbála1ORCID,Petit Stéphane2,Marteau Baptiste1ORCID,Melun Gabriel3,Piégay Hervé1

Affiliation:

1. UMR5600 Environnement Ville Société, CNRS, ENS de Lyon, Université Lyon 2 Lyon France

2. Véodis‐3D Chamalières France

3. Office Français de la Biodiversité Vincennes France

Abstract

AbstractRivers with alluvial bars store more wood than those without, supplied through channel shifting. However, wood dynamics (arrival or new deposits, departure or entrainment, and stable or immobile pieces) can vary substantially over time in response to critical hydrological drivers that are largely unknown. To evaluate them, we studied the dynamics of large wood pieces and logjams along a 12‐km reach of the lower Allier River using six series of aerial images of variable resolution acquired between 2009 and 2020, during which maximum river discharge fluctuated around the dominant flood discharge (Q1.5) that is potentially the bankfull discharge along this well‐preserved not incised reach. Individual wood departure was best correlated with water levels exceeding dominant flood discharge. The duration of the highest magnitude flood was best correlated with wood depositions, with shorter floods resulting in a higher number of deposits. Finally, most of the wood remained stable when river discharge did not exceed 60% of Q1.5 over a long period of time. Changes in inter‐annual wood budget (reach‐scale) depend on the duration over which discharge exceeded 60% of Q1.5. Hydrological conditions driving jam build‐up and removal were similar to those controlling individual wood piece dynamics. The results suggest that specific hydrological conditions influence the dynamics of large wood and log jams in the Allier River. Understanding the dynamics of large wood and its impact on river morphology is fundamental for successful river management and habitat restoration initiatives.

Funder

Office Français de la Biodiversité

Publisher

Wiley

Subject

General Environmental Science,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3