A contrastive analysis on the causes of two regional snowstorm processes influenced by the southern branch trough in Hunan in early 2022

Author:

Hu Yan12ORCID,Chen Long12ORCID,Wang Qingxia12,Zhao Enrong12,Ye Chengzhi3,Liu Huanqian4

Affiliation:

1. Short‐Duration Weather Forecast Department Hunan Meteorological Observatory Changsha China

2. Key Laboratory of Preventing and Reducing Meteorological Disaster in Hunan Province Changsha China

3. Institute of Meteorological Sciences of Hunan Province Changsha China

4. Hunan Meteorological Observation Technology Support Center Changsha China

Abstract

AbstractIn early 2022, there were four low‐temperature weather processes with rain and snow in Hunan Province, China. Two processes occurred on January 28–29 (referred to as the “0128” process) and February 6–7 (referred to as the “0206” process), and they have overlapping areas of heavy snowfall and high intensity of short‐term snowfall. Multi‐source observation data and the National Centers for Environmental Prediction (NCEP) reanalysis data are used to analyze the characteristics of circulation background and mesoscale. In addition, the causes of heavy snowfall processes under the influence of the southern branch trough are discussed based on the dual‐polarization radar products at Changsha station. The results show that two processes are characterized by the rapid phase transformation of rain and snow, concentrated snowfall periods, and heavy snowfall at night. The short‐term snowfall intensity of the “0206” process is greater than that of the “0128” process. The high‐latitude blocking high of the “0206” process is stronger than that of the “0128” process, and the water vapor transport of the southerly jet in low levels in the “0206” process is also stronger. The organized development of cold cloud clusters from the meso‐β scale to the meso‐α scale indicates that the snowfall intensifies, and the maximum blackbody temperature gradient corresponds well to the center of heavy snowfall. The propagation that is similar to the train effect is an important reason for the heavy snowfall process. The vertical variation of the ZH and the bright band of dual‐polarization parameters can determine the phase transformation between rain and snow. When the ZH and ZDR bright bands are 1–3 km away from the ground, the phase state is rain if the ZH near the ground is greater than 0 dBZ and the CC is close to 1; the phase state is the rain‐snow mixed phase if the CC is less than 0.95. When the bottom of the ZH bright band decreases, the CC/ZDR bright band disappears, the near‐surface CC is greater than 0.99 and the ZDR is less than 1 dB, the rain turns to snow. Compared with the “0128” process, the characteristics of the bright ring during the rainfall period of the “0206” process are more obvious, the precipitation intensity judged from the larger ZH and KDP is larger, and the phase transformation is faster due to more significant cooling effect caused by precipitation.

Publisher

Wiley

Subject

Atmospheric Science

Reference38 articles.

1. Analysis on the physical mechanism of snowstorm generated by the south cyclone;Cao D.B.;Meteorological and Environmental Research,2011

2. Atmospheric River–Induced Precipitation and Snowpack during the Western United States Cold Season

3. Influence of Atmospheric Rivers on Mountain Snowpack in the Western United States

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3