Multitarget adaptive virtual fixture based on task learning for hydraulic manipulator

Author:

Cheng Min1,Li Renming1,Ding Ruqi2,Xu Bing3

Affiliation:

1. State Key Laboratory of Mechanical Transmissions, College of Mechanical and Vehicle Engineering Chongqing University Chongqing China

2. Key Laboratory of Conveyance and Equipment, Ministry of Education East China Jiaotong University Nanchang China

3. State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou China

Abstract

AbstractHeavy‐duty construction tasks implemented by hydraulic manipulators are highly challenging due to unstructured hazardous environments. Considering many tasks have quasirepetitive features (such as cyclic material handling or excavation), a multitarget adaptive virtual fixture (MAVF) method by teleoperation‐based learning from demonstration is proposed to improve task efficiency and safety, by generating an online variable assistance force on the master. First, the demonstration trajectory of picking scattered materials is learned to extract its distribution and the nominal trajectory is generated. Then, the MAVF is established and adjusted online by a defined nonlinear variable stiffness and position deviation from the nominal trajectory. An energy tank is introduced to regulate the stiffness so that passivity and stability can be ensured. Taking the operation mode without virtual fixture (VF) assistance and with traditional weighted adaptation VF as comparisons, two groups of tests with and without time delay were carried out to validate the proposed method.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3