Research on defect identification of carbon fiber composite materials based on ultrasonic phased array

Author:

Jing Ziang1,Cai Gaoshen1ORCID,Yu Xiang2,Wang Bingxu1

Affiliation:

1. School of Mechanical Engineering Zhejiang Sci‐Tech University Zhejiang Hangzhou China

2. School of Additive Manufacturing Zhejiang Institute of Mechanical & Electrical Engineering Zhejiang Hangzhou China

Abstract

AbstractIt is more and more difficult to identify defects in carbon fiber composite materials due to the difficulty in making defect samples and the single signal analysis method. In order to better solve the problem of defect identification in carbon fiber composite materials, this study uses ultrasonic phased array equipment to quantitatively locate and detect carbon fiber composite laminates with embedded delamination defects, so as to more intuitively and effectively display the appearance of different delamination defects. The time domain analysis of the collected ultrasonic original signal and the time‐frequency domain analysis using wavelet packet are carried out. A total of 6 eigenvalues were extracted to reflect the ultrasonic signals of different delamination defects. By using genetic algorithm to optimize BP neural network, the recognition accuracy of delamination defects of different sizes is more than 95%, and the recognition accuracy of delamination defects of different depths is 100%, so as to realize the effective intelligent recognition of delamination defects of different sizes and depths of carbon fiber composites. This study is of great significance to improve the accuracy and reliability of defect identification of carbon fiber composite materials.Highlights The ultrasonic phased array equipment is used to quantitatively locate the carbon fiber composite laminates with embedded delamination defects, so that the appearance of different defects can be displayed more intuitively and effectively. Using time domain analysis and time‐frequency domain analysis based on wavelet packet, the combination of the two can more comprehensively extract the effective features of the defect signal. The BP neural network is optimized by genetic algorithm, and the results can effectively and automatically identify different layered defects, which lays a good foundation for the rapid and accurate identification of more defects in the future.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3