Surface‐modified Ag@Ru‐P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid–gas interface

Author:

Hiragond Chaitanya B.1ORCID,Biswas Sohag2,Powar Niket S.1ORCID,Lee Junho1,Gong Eunhee1,Kim Hwapyong1ORCID,Kim Hong Soo1,Jung Jin‐Woo3,Cho Chang‐Hee3,Wong Bryan M.2ORCID,In Su‐Il14ORCID

Affiliation:

1. Department of Energy Science & Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Republic of Korea

2. Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, Department of Physics & Astronomy University of California‐Riverside Riverside California USA

3. Department of Physics and Chemistry Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Republic of Korea

4. NiceScience Corporation Daegu Republic of Korea

Abstract

AbstractSystematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO2 reduction to solar fuels. A surface‐modified Ag@Ru‐P25 photocatalyst with H2O2 treatment was designed in this study to convert CO2 and H2O vapor into highly selective CH4. Ru doping followed by Ag nanoparticles (NPs) cocatalyst deposition on P25 (TiO2) enhances visible light absorption and charge separation, whereas H2O2 treatment modifies the surface of the photocatalyst with hydroxyl (–OH) groups and promotes CO2 adsorption. High‐resonance transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray absorption near‐edge structure, and extended X‐ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst, while thermogravimetric analysis, CO2 adsorption isotherm, and temperature programmed desorption study were performed to examine the significance of H2O2 treatment in increasing CO2 reduction activity. The optimized Ag1.0@Ru1.0‐P25 photocatalyst performed excellent CO2 reduction activity into CO, CH4, and C2H6 with a ~95% selectivity of CH4, where the activity was ~135 times higher than that of pristine TiO2 (P25). For the first time, this work explored the effect of H2O2 treatment on the photocatalyst that dramatically increases CO2 reduction activity.

Funder

Ministry of Science and ICT, South Korea

U.S. Department of Energy

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3