A simple strategy to simultaneously improve the lifetime and activity of classical iridium complex for photocatalytic water‐splitting

Author:

Huang Yifan12,Wang Yue12,Chen Shuang12,Gao Jian12,Wang Ying23,Zhang Yifan12,Deng Pengyang12ORCID

Affiliation:

1. State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei China

3. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China

Abstract

AbstractHerein, we design and synthesize a series of oligomers [Ir(ppy)2(dabpy)‐ODPA]n (D1‐n) by copolymerization of [Ir(ppy)2(dabpy)][PF6] (D2) with 4,4′‐Oxydiphthalic anhydride (ODPA), to resolve the problem of simultaneous improvement of stability and activity of classical iridium complex for photocatalytic water‐splitting. Fourier‐transform infrared spectroscopy, X‐ray photoelectron spectroscopy, solid‐state nuclear magnetic resonance, and gel permeation chromatography results indicate that the degree of polymerization (n) of D1‐n could be tuned by the synthesis method. The best photocatalytic performance is reached by D1‐n with n at of 2 and/or 3 (D1‐2/3), which exhibits a photocatalytic lifetime up to 676 h and a photocatalytic hydrogen evolution of 162055.1 μmol·g‐1. Compared with classical iridium complex D2, the photocatalytic lifetime of D1‐2/3 is about 38 times longer and the photocatalytic activity is 1.3 times higher. Further increase of n leads to a decrease in both photocatalytic lifetime and activity. According to the spectroscopic characterizations, photoelectrochemical experiments, and density functional theory calculation, the significantly enhanced photocatalytic performance of D1‐2/3 originates from the oligomeric structure. The oligomer chain of D1‐2/3 with suitable length acts as a large steric hindrance to reduce the undesired photoinduced decomposition and prolong its lifetime. The possible coupling of adjacent Ir complexes in D1‐2/3 lowers the energy gap and increases the utilization of visible light, which overcomes the adverse effect of large steric hindrance and finally improve the activity. This work first provides a simple strategy for constructing oligomeric Ir photosensitizers to simultaneously achieve long lifetime and high activity, it will lay the foundation for the design of highly efficient photosensitizers in the future.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3