A multiscale preconditioner for crack evolution in porous microstructures: Accelerating phase‐field methods

Author:

Li Kangan1,Mehmani Yashar1ORCID

Affiliation:

1. Energy and Mineral Engineering Department The Pennsylvania State University University Park Pennsylvania USA

Abstract

AbstractPhase‐field methods are attractive for simulating the mechanical failure of geometrically complex porous microstructures described by 2D/3D x‐ray CT images in subsurface (e.g., CO storage) and manufacturing (e.g., Li‐ion battery) applications. They capture the nucleation, growth, and branching of fractures without prior knowledge of the propagation path or having to remesh the domain. Their drawback lies in the high computational cost for the typical domain sizes encountered in practice. We present a multiscale preconditioner that significantly accelerates the convergence of Krylov solvers in computing solutions of linear(ized) systems arising from the sequential discretization of the momentum and crack‐evolution equations in phase‐field methods. The preconditioner is an algebraic reformulation of a recent pore‐level multiscale method (PLMM) by the authors and consists of a global preconditioner and a local smoother . Together, and attenuate low‐ and high‐frequency errors simultaneously. The proposed , used in the momentum equation only, is a simplification of a recent variant proposed by the authors that is much cheaper and easier to deploy in existing solvers. The smoother , used in both the momentum and crack‐evolution equations, is built such that it is compatible with and more robust and efficient than black‐box smoothers like ILU(). We test and systematically for static‐ and evolving‐crack problems on complex 2D/3D porous microstructures, and show that they outperform existing algebraic multigrid solvers. We also probe different strategies for updating as cracks evolve and show the associated cost can be minimized if is updated adaptively and infrequently. Both and are scalable on parallel machines and can be implemented non‐intrusively in existing codes.

Funder

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3