On the interaction between the search parameters and the nature of the search problems in search‐based model‐driven engineering

Author:

Roca Isis12ORCID,Font Jaime1ORCID,Arcega Lorena1ORCID,Cetina Carlos1ORCID

Affiliation:

1. SVIT Research Group Universidad San Jorge Zaragoza Spain

2. PROS Research Centre Universitat Politècnica de València Valencia Spain

Abstract

AbstractThe use of search‐based software engineering to address model‐driven engineering activities (SBMDE) is becoming more popular. Many maintenance tasks can be reformulated as a search problem, and, when those tasks are applied to software models, the search strategy has to retrieve a model fragment. There are no studies on the influence of the search parameters when applied to software models. This article evaluates the impact of different search parameter values on the performance of an evolutionary algorithm whose population is in the form of software models. Our study takes into account the nature of the model fragment location problems (MFLPs) in which the evolutionary algorithm is applied. The evaluation searches 1895 MFLPs (characterized through five measures that define MFLPs) from two industrial case studies and uses 625 different combinations of search parameter values. The results show that the impact on the performance when varying the population size, the replacement percentage, or the crossover rate produces changes of around 30% in performance. With regard to the nature of the problems, the size of the search space has the largest impact. Search parameter values and the nature of the MFLPs influence the performance when applying an evolutionary algorithm to perform fragment location on models. Search parameter values have a greater effect on precision values, and the nature of the MFLPs has a greater effect on recall values. Our results should raise awareness of the relevance of the search parameters and the nature of the problems for the SBMDE community.

Funder

Gobierno de Aragón

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3