Improving ecological function of polluted coasts under a tide of plastic waste

Author:

McAfee Dominic12,Leung Jonathan YS13,Connell Sean D12

Affiliation:

1. School of Biological Sciences The University of Adelaide Adelaide Australia

2. Environment Institute The University of Adelaide Adelaide Australia

3. Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou China

Abstract

Unprecedented levels of plastics are entering coastal seas, which are already subject to another insidious pollutant: excess nitrogen. Both pollutants were created to enhance human well‐being on land but once in the sea they impair the function of filter‐feeding organisms that help maintain coastal water quality. We conceptualized evidence to show that oysters (Ostrea spp), the reefs of which can provide a biological solution for managing water quality, can effectively reduce the threat of algal blooms caused by excess nitrogen pollution, even when exposed to moderate microplastic pollution. Yet the functional collapse of this ecosystem service (filter‐feeding by oysters) is at risk if current trends in plastic pollution continue, and pollution thresholds that predict functional collapse have already been exceeded in the world's most polluted rivers. Nevertheless, although the plastic problem is daunting, growing social and political awareness of the need to reduce plastic waste provides hope that a sustainable material society can be attained.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3