A novel discrete cuckoo search algorithm‐based selective mapping technique to minimize the peak‐to‐average power ratio of universal filtered multicarrier signal

Author:

Şimşir Şakir1ORCID,Taşpınar Necmi2

Affiliation:

1. Department of Electrical and Electronics Engineering Nevsehir Haci Bektas Veli University Nevsehir Turkey

2. Department of Electrical and Electronics Engineering Erciyes University Kayseri Turkey

Abstract

SummaryThe universal filtered multicarrier (UFMC), which has emerged as a product of the intensive studies carried out for developing alternative waveforms compatible with the oncoming fifth generation (5G) technology, has rapidly become one of the few waveforms considered seriously to be utilized in the next generation telecommunication systems due to its exclusive features. However, high peak‐to‐average power ratio (PAPR) problem specific to the multicarrier waveforms is waiting for researchers as the primary issue to be tackled in the UFMC waveform. To address this issue, an efficient PAPR reduction scheme called discrete cuckoo search algorithm‐based selective mapping (DCS‐SLM) is suggested in this paper. While creating the proposed DCS‐SLM scheme, in order to make the original CS algorithm suitable to be integrated into the conventional SLM method, a novel DCS algorithm was developed. Thanks to the related DCS algorithm, it becomes possible in the SLM technique to perform phase sequence optimization, which is a combinatorial optimization process that can be carried out in discrete space. It is clearly observed from the simulation results that the integration of our novel DCS algorithm to create a new PAPR reduction technique called DCS‐SLM leads to a remarkable performance improvement in the conventional SLM method due to the DCS‐based phase optimization through which the PAPR of UFMC signals are reduced to minimum levels.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3