Revisiting strain localization analysis for elastoplastic constitutive models in geomechanics

Author:

Hofer Paul1ORCID,Neuner Matthias1ORCID,Gamnitzer Peter1ORCID,Hofstetter Günter1ORCID

Affiliation:

1. Institute of Basic Sciences in Engineering Sciences University of Innsbruck Innsbruck Austria

Abstract

AbstractThe localization of deformations plays a crucial role in the failure of granular materials. Concerning classical continuum constitutive models, the localization of deformations is considered to be connected to the loss of ellipticity of the governing rate equilibrium equations, and entails mesh sensitivity in finite element simulations. While previous studies are often limited to strain localization analyses of individual tests, the focus of the present contribution lies on studying the localization properties in general constitutive states. For this purpose, a staggered optimization algorithm for determining the loss of ellipticity, considering both extreme values, minimum and maximum, of the determinant of the acoustic tensor, is proposed. Part of this algorithm representing a novel application of spherical Fibonacci lattices for discretizing the feasible domain of the associated optimization problem. In the presented localization study of the widely recognized modified Cam‐clay model, special attention is paid to determining the influence of the individual model parameters. Specifically, three factors favoring strain localization are found, namely (i) a low value of the ratio of the primary compression index and the recompression index, (ii) a large value of the critical state frictional constant, as well as (iii) a large value of Poisson's ratio. Moreover, a structural finite element study is performed, confirming the results of localization analyses at the constitutive level.

Funder

Tiroler Wissenschaftsförderung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3