Alone, together: On the benefits of Bayesian borrowing in a meta‐analytic setting

Author:

Harari Ofir12ORCID,Soltanifar Mohsen13ORCID,Verhoek Andre4,Heeg Bart4ORCID

Affiliation:

1. Real World and Advanced Analytics Cytel Inc. Vancouver British Columbia Canada

2. Core Clinical Sciences Vancouver British Columbia Canada

3. Analytics Division, College of Professional Studies Northeastern University Vancouver British Columbia Canada

4. RWA & HEOR Cytel Inc. Rotterdam The Netherlands

Abstract

AbstractIt is common practice to use hierarchical Bayesian model for the informing of a pediatric randomized controlled trial (RCT) by adult data, using a prespecified borrowing fraction parameter (BFP). This implicitly assumes that the BFP is intuitive and corresponds to the degree of similarity between the populations. Generalizing this model to any historical studies, naturally leads to empirical Bayes meta‐analysis. In this paper we calculate the Bayesian BFPs and study the factors that drive them. We prove that simultaneous mean squared error reduction relative to an uninformed model is always achievable through application of this model. Power and sample size calculations for a future RCT, designed to be informed by multiple external RCTs, are also provided. Potential applications include inference on treatment efficacy from independent trials involving either heterogeneous patient populations or different therapies from a common class.

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3