Affiliation:
1. Department of Orthopedic Surgery and Orthopedic Research Institute Laboratory of Stem Cell and Tissue Engineering State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu China
2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
Abstract
AbstractDiabetes mellitus is associated with a wide range of neuropathies, vasculopathies, and immunopathies, resulting in many complications. More than 30% of diabetic patients risk developing diabetic foot ulcers (DFUs). Non‐coding RNAs (ncRNAs), including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs), and circular RNAs (circRNAs), play essential roles in various biological functions in the hyperglycaemic environment that determines the development of DFU. Ulceration results in tissue breakdown and skin barrier scavenging, thereby facilitating bacterial infection and biofilm formation. Many bacteria contribute to diabetic foot infection (DFI), including Staphylococcus aureus (S. aureus) et al. A heterogeneous group of “ncRNAs,” termed small RNAs (sRNAs), powerfully regulates biofilm formation and DFI healing. Multidisciplinary foot care interventions have been identified for nonhealing ulcers. With an appreciation of the link between disease processes and ncRNAs, a novel therapeutic model of bioactive materials loaded with ncRNAs has been developed to prevent and manage diabetic foot complications.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献