Flexible and elastic thermal regulator for multimode intelligent temperature control

Author:

Chen Can1,Yu Huitao1,Lai Tao2,Guo Jun2,Qin Mengmeng1,Qu Zhiguo2,Feng Yiyu1,Feng Wei1ORCID

Affiliation:

1. Tianjin Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin P. R. China

2. MOE Key Laboratory of Thermo‐Fluid Science and Engineering School of Energy and Power Engineering Xi'an Jiaotong University Xi'an P. R. China

Abstract

AbstractAs nonlinear thermal devices, thermal regulators can intelligently respond to temperature and control heat flow through changes in heat transfer capacities, which allows them to reduce energy consumption without external intervention. However, current thermal regulators generally based on high‐quality crystalline‐structure transitions are intrinsically rigid, which may cause structural damage and functional failure under mechanical strain; moreover, they are difficult to integrate into emerging soft electronic platforms. In this study, we develop a flexible, elastic thermal regulator based on the reversible thermally induced deformation of a liquid crystal elastomer/liquid metal (LCE/LM) composite foam. By adjusting the crosslinking densities, the LCE foam exhibits a high actuation strain of 121% with flexibility below the nematic–isotropic phase transition temperature (TNI) and hyperelasticity above TNI. The incorporation of LM results in a high thermal resistance switching ratio of 3.8 over a wide working temperature window of 60°C with good cycling stability. This feature originates from the synergistic effect of fragmentation and recombination of the internal LM network and lengthening and shortening of the bond line thickness. Furthermore, we fabricate a “grid window” utilizing photic‐thermal integrated thermal control, achieving a superior heat supply of 13.7°C at a light intensity of 180 mW/cm2 and a thermal protection of 43.4°C at 1200 mW/cm2. The proposed method meets the mechanical softness requirements of thermal regulator materials with multimode intelligent temperature control.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3