A comparative study of TOPSIS‐based GCMs selection and multi‐model ensemble

Author:

Han Rucun123ORCID,Li Zhanling124ORCID,Han Yuanyuan12,Huo Pengying12,Li Zhanjie5

Affiliation:

1. Key Laboratory of Groundwater Conservation of MWR China University of Geosciences Beijing China

2. School of Water Resources and Environment China University of Geosciences Beijing China

3. School of Water Conservancy and Environment Engineering Zhejiang University of Water Resources and Electric Power Hangzhou China

4. State Key Laboratory of Hydrology‐Water Resources and Hydraulic Engineering Nanjing Hydraulic Research Institute Nanjing China

5. College of Water Sciences Beijing Normal University Beijing China

Abstract

AbstractGeneral circulation models (GCMs) are developed to simulate the past climate and generate future climate predictions. In the context of global warming, their important roles in identifying possible solutions to water resources planning/management are recognized by the world. However, in actual and regional implementation, due to many factors like initial and boundary conditions, parameters and model structures and so forth, there are great variabilities and uncertainties across the future climate projections of GCMs outputs, which has attracted criticism from water resources planners. Thus, the GCMs usually must be evaluated for assessing their performances in simulating the historical observations. Currently, there are many different conclusions and opinions as to whether the optimal individual model is more advantageous or whether the combined consideration of MME works better. The purpose of this paper is to compare the advantages and disadvantages between the selection of the optimal single GCM and multi‐model ensemble (MME) based on one of the more objective selection methods called TOPSIS. The results show that the performances of GCMs in simulating precipitation and temperature in different climate subregions over China are not identical. For CMIP6 GCMs simulations, the optimal precipitation GCM is CMCC‐CM2‐SR5 for EC, MIROC6 for SC, SWC and NWC, CESM2‐WACCM for NC and NEC, and FGOALS‐g3 for QTP. As for temperature, only NESM3 and BCC‐ESM1 are the optimal GCM for QTP and NWC, respectively; in other subregions, MME is better than single GCM. In general, a simple arithmetic averaging approach employed to generate the MME model is not superior to the optimal GCM, although the error metric with the observed data is reduced, at the cost of a severe compression of the interannual variability.

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3