BEATS: Bayesian hybrid design with flexible sample size adaptation for time‐to‐event endpoints

Author:

Bi Dehua1,Liu Meizi2,Lin Jianchang2ORCID,Liu Rachael2ORCID

Affiliation:

1. Department of Public Health Sciences University of Chicago Chicago Illinois USA

2. Statistical & Quantitative Sciences Takeda Pharmaceuticals Cambridge Massachusetts USA

Abstract

As the roles of historical trials and real‐world evidence in drug development have substantially increased, several approaches have been proposed to leverage external data and improve the design of clinical trials. While most of these approaches focus on methodology development for borrowing information during the analysis stage, there is a risk of inadequate or absent enrollment of concurrent control due to misspecification of heterogeneity from external data, which can result in unreliable estimates of treatment effect. In this study, we introduce a Bayesian hybrid design with flexible sample size adaptation (BEATS) that allows for adaptive borrowing of external data based on the level of heterogeneity to augment the control arm during both the design and interim analysis stages. Moreover, BEATS extends the Bayesian semiparametric meta‐analytic predictive prior (BaSe‐MAP) to incorporate time‐to‐event endpoints, enabling optimal borrowing performance. Initially, BEATS calibrates the expected sample size and initial randomization ratio based on heterogeneity among the external data. During the interim analysis, flexible sample size adaptation is performed to address conflicts between the concurrent and historical control, while also conducting futility analysis. At the final analysis, estimation is provided by incorporating the calibrated amount of external data. Therefore, our proposed design allows for an approximation of an ideal randomized controlled trial with an equal randomization ratio while controlling the size of the concurrent control to benefit patients and accelerate drug development. BEATS also offers optimal power and robust estimation through flexible sample size adaptation when conflicts arise between the concurrent control and external data.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3