Phosphorus distributions in alluvial soils of the Lower Mississippi River Basin: A case of dual legacies

Author:

Witthaus Lindsey1ORCID,Pawlowski Ethan D.1ORCID,Stevens Eric1,Chatterjee Amitava2ORCID,Locke Martin A.1ORCID,McNamara Sarah3,Moore Matthew T.1ORCID

Affiliation:

1. USDA‐ARS National Sedimentation Laboratory, Water Quality and Ecology Research Unit Oxford Mississippi USA

2. USDA‐ARS National Laboratory for Agriculture and the Environment, Soil, Water, and Air Resources Research Unit Ames Iowa USA

3. Monk & Associates, Inc. Walnut Creek California USA

Abstract

AbstractLegacies can become intertwined, none more so than the body of work of Dr. Andrew Sharpley examining agricultural nutrient delivery to waterbodies and the phosphorus (P) accumulation in agricultural soils, or “legacy P.” Although Sharpley's work focused on the anthropogenic influence on soil P, our study suggests soils of the Lower Mississippi Alluvial Plain (MAP) represent a natural legacy with moderate levels of available P resulting from minimal anthropogenic input. In 2019, we collected surface (0–5 cm) soil samples from four regionally dominant soil series in either cropland or forested land uses, spanning 76 locations within the MAP. Soil chemical and physical properties were measured utilizing a suite of extractions and texture analysis to correlate properties with soil P values. Total soil P did not vary between land uses. Mehlich‐3 extractable P was slightly higher in cropland soils due to higher concentrations in Forestdale and Sharkey soils. Dundee, Forestdale, and Sharkey cropland soils showed significant associations between Mehlich‐3‐extractable iron (Fe) and P. Ratios of total carbon (TC) to total nitrogen (C:N) and TC to P (C:P) were consistent across all sampled soil series but differed between forest and cropland soils. These ratios are critical for establishing baseline soil nutrient values in simulation models and can be used to improve water quality model simulations that help guide P management in the MAP. As Sharpley routinely demonstrated, understanding sources of P is critical for developing an appropriate management strategy. This study provides critical knowledge on soil P dynamics in the MAP region.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3