Affiliation:
1. Savannah River Ecology Laboratory University of Georgia Aiken South Carolina USA
Abstract
AbstractMajor weather events contribute to the mobility and remobilization of legacy mercury (Hg) contamination and sequestration within sediments. Remediation using biochar as a soil amendment is a useful technique to immobilize and decrease Hg toxicity. This study explored whether biochar application is effective at stabilizing labile mercury (LaHg) from floodplain sediment. Controlled mesocosms simulating contamination events and flooding conditions were conducted. Floodplain sediment, which experiences annual periodic flooding, was collected. Sediment was spiked with inorganic Hg, applied with different types of biochar, and experienced simulated flooding events. Four types of biochar, pure rice husk (RH), pure peanut hull (PH), sulfur‐modified rice husk (SMRH), and sulfur‐modified peanut hull (SMPH), were applied at 10 and 40 g/kg rates (i.e., RH 10, RH 40; PH 10, PH 40, SMRH 10, SMRH 40, SMPH 10, SMPH 40). Total Hg, methylmercury, and LaHg concentrations were analyzed by coupling with redox potential measurements. Results indicate that SMRH 10, PH 10, PH 40, SMPH 10, and SMPH 40 successfully remediate Hg by stabilizing and reducing LaHg species from floodplain sediment. However, a high Hg methylation potential was observed with unsulfated and sulfated peanut hulls (PH 10, PH 40, SMPH 10, and SMPH 40), as they tend to create a reducing microenvironment that favors sulfate reduction reactions. Additionally, sulfur‐modified biochar tends to promote Hg methylation potential at high application rates (i.e., 40 g/kg). We thus recommend using SMRH at a relatively low application rate (SMRH 10) for the remediation of Hg from floodplain sediment.
Funder
U.S. Department of Energy