A fused CNN‐LSTM model using FFT with application to real‐time power quality disturbances recognition

Author:

Cen Senfeng1ORCID,Kim Dong Ok2,Lim Chang Gyoon1ORCID

Affiliation:

1. Department of Computer Engineering Chonnam National University Yeosu South Korea

2. National Innovation Cluster Support Center, Jeonnam Technopark Suncheon Jenonnam South Korea

Abstract

AbstractWith the progress of renewable energy generation and energy storage technologies, more and more renewable sources and devices are integrated into the power system. Due to the complexity of the power system, single and multiple power quality disturbances (PQDs) occur more frequently. Hence, real‐time detection of PQDs is the primary issue to mitigate the risk of distortions. This study presents the real‐time PQDs classification using fused convolutional neural networks (CNN) combined with long short‐term memory (fused CNN‐LSTM) architecture based on time and frequency domain features. The frequency‐domain features were obtained from time‐series data using fast Fourier transform. The original time‐domain and frequency‐domain features are extracted by respective CNN‐LSTM structures. The extracted time and frequency domain features are concatenated to classify the PQD through fully connected layers. Our proposed method was trained and tested using 16 types of synthetic noise PQDs data generated by mathematical models, in accordance with the standard IEEE‐1159. Moreover, to further verify the performance of our approach, a simulation distributed power system is carried out to detect various PQDs. We compared three advanced neural network approaches: Deep CNN, CNN‐LSTM, and multifusion CNN (MFCNN). The fused CNN‐LSTM model takes only 0.64 ms to classify each PQDs signal and achieves an accuracy of 98.95% and 98.89% in synthetic data and simulated power systems which indicates our proposed method outperformed compared methods.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3