Affiliation:
1. Department of Computer Engineering Chonnam National University Yeosu South Korea
2. National Innovation Cluster Support Center, Jeonnam Technopark Suncheon Jenonnam South Korea
Abstract
AbstractWith the progress of renewable energy generation and energy storage technologies, more and more renewable sources and devices are integrated into the power system. Due to the complexity of the power system, single and multiple power quality disturbances (PQDs) occur more frequently. Hence, real‐time detection of PQDs is the primary issue to mitigate the risk of distortions. This study presents the real‐time PQDs classification using fused convolutional neural networks (CNN) combined with long short‐term memory (fused CNN‐LSTM) architecture based on time and frequency domain features. The frequency‐domain features were obtained from time‐series data using fast Fourier transform. The original time‐domain and frequency‐domain features are extracted by respective CNN‐LSTM structures. The extracted time and frequency domain features are concatenated to classify the PQD through fully connected layers. Our proposed method was trained and tested using 16 types of synthetic noise PQDs data generated by mathematical models, in accordance with the standard IEEE‐1159. Moreover, to further verify the performance of our approach, a simulation distributed power system is carried out to detect various PQDs. We compared three advanced neural network approaches: Deep CNN, CNN‐LSTM, and multifusion CNN (MFCNN). The fused CNN‐LSTM model takes only 0.64 ms to classify each PQDs signal and achieves an accuracy of 98.95% and 98.89% in synthetic data and simulated power systems which indicates our proposed method outperformed compared methods.
Subject
General Energy,Safety, Risk, Reliability and Quality
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献