Hall current, radiation absorption, and diffusion thermoeffects on unsteady MHD rotating chemically reactive second‐grade fluid flow past a porous inclined plate in the presence of an aligned magnetic field, thermal radiation, and chemical reaction

Author:

Sridevi D.1,Murthy Ch. V. Ramana1,Varma N. Udaya Bhaskara2

Affiliation:

1. Department of Engineering Mathematics College of Engineering Koneru Lakshmaiah Education Foundation Vaddeswaram Andhra Pradesh India

2. Department of Engineering Mathematics and Humanities S. R. K. R. Engineering College Bhimavaram Andhra Pradesh India

Abstract

AbstractIn this paper, we analyze the effects of Hall current, radiation absorption and diffusion thermo on unsteady magnetohydromagnetic free convection flow of a viscous incompressible electrically conducting and chemically reacting second‐grade fluid past an inclined porous plates in the presence of an aligned magnetic field, thermal radiation, and chemical reaction. An exact analytical solution of the governing equations for fluid velocity, fluid temperature, and species concentration subject to appropriate initial and boundary conditions is obtained using the perturbation technique. Expressions for shear stress, rate of heat transfer, and rate of mass transfer at the plate are derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically, whereas those of shear stress and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. In addition, the skin friction on the boundary, the heat flux expressed in terms of the Nusselt number, and the rate of mass transfer described in the Sherwood number are all derived, and their behavior is studied computationally. It can be deduced that an increase in radiation absorption and hall current parameters over the fluid region increases the velocity produced. The resulting velocity continually increases to a very high level, with contributions coming from thermal and solutal buoyancy forces. Skin friction may decrease by manipulating the rotation parameter, but the Hall effect can worsen it. When the parameter for the chemical reaction increases, there is a concomitant rise in the mass transfer rate.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3