Modeling of Dual‐Factor Drag Correction Model for Bubbly Flow under Elevated Pressure

Author:

Gao Yibo12,Geng Linlin13,Verdin Patrick G.2,Fall Ibra1,Zhang Ruijie1,Tian Zhongjie1,Zhang Desheng1

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology Jiangsu University No. 301 Xuefu Road Zhenjiang Jiangsu Province 212013 China

2. Energy & Sustainability Cranfield University Wharley End Cranfield Bedfordshire MK43 0AL UK

3. Wenling Fluid Machinery Technology Institute of Jiangsu University Jinli Road Wenling Zhejiang Province 317525 China

Abstract

AbstractA pressure correction method is proposed considering the influence of a dual factor. The applicability of a pressure correction method coupled with a drag model is discussed along with the accuracy of the simulation results obtained by such a pressure correction method. It is found that the present pressure correction method combined with the DBS (dual bubble size) drag model can accurately reflect the changing trend of gas holdup distribution with pressure. It is also established that results from this model applied to a bubble column match well with the experimental data. Finally, when compared with other pressure correction models, the proposed model shows better robustness in three‐dimensional simulations and can predict radial gas holdup distributions with better accuracy.

Funder

National Natural Science Foundation of China

Outstanding Youth Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3