Simulating the Moisture Diffusion and Evaporation of Sawdust during Convective Drying using the Spatial Reaction Engineering Approach

Author:

Shin Woo In1,Foo Jia Wei1,Putranto Aditya2,Hii Ching Lik1ORCID

Affiliation:

1. University of Nottingham Malaysia, Jalan Broga Department of Chemical and Environmental Engineering, Faculty of Science and Engineering 43500 Semenyih, Selangor Darul Ehsan Malaysia

2. University of Surrey School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences GU2 7XH Guildford, Surrey England

Abstract

AbstractThe spatial reaction engineering approach (S‐REA) was used to simulate hot air drying of sawdust. The studies extended the previous work reported in literature where the sawdusts were dried using hot air at 70 °C, 80 °C, and 90 °C. The simulated results were found to agree well with the experimental moisture content (R2 > 0.98) and temperature (R2 > 0.82) profiles. In a further analysis using S‐REA, the spatial profiles of moisture content and vapor concentration were generated to understand better the physics behind. Simulation also revealed that the external mass transfer resistance was more dominant as compared to the internal diffusion resistance. The vapor concentrations were observed peaked at time range of about 10 800– 18 000 s and dropped thereafter upon further heating. This observation could be supported by the variation in the vapor effective diffusivities where peak diffusivity values typically occur after most of the moisture evaporates towards the end of drying.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3