Simulating Stirred Tank Reactor Characteristics with a Lattice Boltzmann CFD Code

Author:

Kersebaum Jule12,Flaischlen Steffen1,Hofinger Julia3,Wehinger Gregor D.14ORCID

Affiliation:

1. Clausthal University of Technology Institute of Chemical and Electrochemical Process Engineering Leibnizstr. 16 38678 Clausthal-Zellerfeld Germany

2. University of Chemistry and Technology Prague Department of Chemical Engineering Technická 3 160 00 Praha 6 Czech Republic

3. BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen am Rhein Germany

4. Karlsruhe Institute of Technology Institute of Chemical Process Engineering Fritz-Haber-Weg 2 76131 Karlsruhe Germany

Abstract

AbstractAlthough mixing in stirred tanks is common in the chemical and process industry, it is complex and not fully understood. In recent years, computational fluid dynamics (CFD) simulations with large eddy simulation turbulence models have become an important modeling tool. In this study, its current state for applicability to stirred tanks was evaluated. First, the power characteristics of different impellers were simulated and compared with experimental data. Second, Rushton and pitched blade turbines were validated in terms of the local velocity components, dissipation rates, and the trailing vortex. Finally, mixing times for different viscosity ratios were obtained from the CFD results and compared with a literature study. Hydrodynamics can be well predicted. However, mixing times for viscosity ratios larger than 1:100 are error‐prone.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3