Dynamics of a Polymer Solution Droplet on a High‐Temperature Surface

Author:

Masuda Hayato12ORCID,Wada Koki2,Okumura Shinichiro1,Iyota Hiroyuki12

Affiliation:

1. Osaka City University Graduate School of Engineering, Department of Mechanical and Physical Engineering 3-3-138 Sugimoto Sumiyoshi-ku 558-8585 Osaka Japan

2. Osaka Metropolitan University Graduate School of Engineering, Department of Mechanical Engineering 3-3-138 Sugimoto Sumiyoshi-ku 558-8585 Osaka Japan

Abstract

AbstractDroplets on a surface with a sufficiently high temperature, exceeding the boiling point of the fluid, are suitable for chemical reactions because they provide a high‐temperature and well‐mixed field. The dynamics of a droplet containing a polymer (xanthan gum) on a high‐temperature surface was investigated. The boiling pattern was successfully classified based on the Ohnesorge number. The viscosity increase caused by polymer addition suppressed deformation during the spreading process after impact. However, at the highest polymer concentration, the central axis of the droplet was inclined, resulting in droplet rotation during bouncing. Consequently, the bouncing height was decreased by a loss in kinetic energy as the energy was partially converted to rotational energy.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Propelled Polymeric Droplet in Leidenfrost State on a Superheated Ratchet Surface;Industrial & Engineering Chemistry Research;2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3