Study on Cracking/Oxidation/Integrated Reforming Reaction for Efficient Conversion of Biomass to High‐Quality Syngas

Author:

Chen Wenqing12,He Tao134,Gu Suning12,Wu Jingli134,Wang Zhiqi134,Wu Jinhu134

Affiliation:

1. CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 China

2. College of chemical engineering University of Chinese Academy of Sciences Beijing 100049 China

3. Shandong Energy Institute Qingdao 266101 China

4. Qingdao New Energy Shandong Laboratory 189 Songling road Qingdao 266101 China

Abstract

AbstractThe advanced gasification technology of coal is mainly based on oxidation reaction and high temperature but is not suitable for biomass conversion. High tar and CO2 content are the two main issues that affect the efficiency of biomass gasification. In order to deeply convert hydrocarbons/tar and CO2 simultaneously, and enhance syngas yield, the cracking/partial oxidation/reforming reactions and their integrated reaction routes are investigated from an interrelated view. The effects of each reaction on the distribution of C/H elements in hydrocarbons/tar and syngas are illustrated. By cracking and oxidation reaction, the syngas yield can only reach 0.93 Nm3 kg−1, about 58 % of the theoretical maximum value; a large proportion of residual C/H atoms existing in stable hydrocarbons/tar/CO2/H2O are not converted. Based on the concept of lattice O oxidation combined with dry reforming, it realizes syngas yield (CO+H2) 1.56 Nm3 kg−1 with 91.6 % concentration, demonstrating that tar/hydrocarbons and CO2/H2O are converted to syngas efficiently. The effects of [O]/C ratio on gas yield represent a synergistic coordination between lattice Os oxidation and catalytic reforming reaction. Oxidation‐reforming is the optimum route for biomass conversion to high‐quality syngas.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3