Closer Approach towards the Preparation of Cellulose and Microcrystalline Cellulose from Corn Husks

Author:

Anh Phan Thi Hoang12ORCID,Tai Doan Minh12

Affiliation:

1. Department of Organic Chemical Engineering, Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City 700000 Vietnam

2. Vietnam National University Ho Chi Minh City Linh Trung Ward Thu Duc City Ho Chi Minh City 700000 Vietnam

Abstract

AbstractIn this work, cellulose was effectively produced from corn husks by a simple and eco‐friendly method. Major influencing variables for cellulose extraction were examined, and the highest yield of lignin and hemicellulose cleavage was achieved after corn husks were treated in 12.5 wt % NaOH solution at solid/liquid ratio (S/L) of 1:10 g mL−1, 70 °C for 90 min. Subsequent bleaching conducted in 10 wt % H2O2 solution at 80 °C for 90 min produced cellulose with a lightness value (L*) of ∼87, chromaticity indexes a* = −1.85, b* = 2.94 with high purity, 90.86 %, and crystallinity, 64.94 %. Fourier transform infrared, scanning electron microscopy, and x‐ray diffraction analysis showed a clear transition in morphology, structure modification, and crystallinity consistent with the alteration of the chemical composition from raw material to delignified residue and the bleached one. To synthesize microcrystalline cellulose (MCC), the hydrolysis was investigated in H2SO4 solutions of different concentrations and durations via monitoring particle size distribution by laser diffraction spectroscopy. At the most efficient conditions (30 wt % H2SO4, 18 h, 45 °C, 1:10 S/L ratio), the obtained MCC reached an average particle size of 42.68 µm, crystallinity degree of 61.6 %, and cellulose purity of 92.5 %. Meanwhile, similar parameters with 4 N HCl solution produced MCC with the same purity but higher crystallinity (65.6 %), higher mean size, 67.62 µm, and higher aspect ratio. SEM images showed that 4 N HCl caused less detrimental and erosive action, and less fragmentation on cellulose microfibrils compared to 30 wt % H2SO4. The study's outcome supports the feasibility of corn husks to produce cellulose and MCC for further applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3