Synthesis of a Polyacrylic‐Grafted, Multiwalled Carbon Nanotube‐Loaded Gum Ghatti Hydrogel for Diclofenac Removal

Author:

Dave Pragnesh N.1ORCID,Chopda Lakha V.2,Kamaliya Bhagvan P.1

Affiliation:

1. Sardar Patel University Department of Chemistry 388 120 Vallabh Vidynagar Gujarat India

2. Government Engineering College 370 001 Bhuj India

Abstract

AbstractWater pollution causes health‐ and environment‐related problems. Adsorption of pollutants from the bulk is an efficient method for their removal. Modified biopolymers have proven to be effective adsorbents. The biopolymer gum ghatti (GG) has shown good adsorption properties. In this work, GG was grafted with polyacrylic acid (PAA) and loaded with oxidized multiwalled carbon nanotubes (O‐MWCNTs). The resulting GG‐g‐PAA/O‐MWCNT hydrogel was characterized by FT‐IR, XRD, and SEM and its adsorption activity was examined. Sodium diclofenac (SD) was efficiently removed by GG‐g‐PAA/O‐MWCNT. The highest removal efficiency of 92.89 % was achieved at pH 2. The adsorption of SD followed the Langmuir adsorption isotherm and pseudo‐second‐order model.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3