Adaptive Data‐Driven Modeling Strategy Based on Feature Selection for an Industrial Natural Gas Sweetening Process

Author:

Jiang Wei12,Li Jinjin12,Chen Guanshan12,Luo Renjiang3,Chen Yan4,Ji Xu5,Li Zhuoxiang5ORCID,He Ge5ORCID

Affiliation:

1. National Energy R&D Center of High Sulfur Gas Exploitation 610051 Chengdu China

2. PetroChina Southwest Oil & Gasfield Company Research Institute of Natural Gas Technology 610213 Chengdu China

3. PetroChina Suining Natural Gas Purification Company 629000 Suining China

4. PetroChina Southwest Oil & Gas Field Company Chongqing Gas Mine Automated Measurement and Environmental Monitoring Station 400000 Chongqing China

5. Sichuan University School of Chemical Engineering 610065 Chengdu China

Abstract

AbstractAs the core process of natural gas purification plant, natural gas sweetening directly affects the production efficiency and product quality of the purification plant. However, process modeling based on sulfur content prediction presents challenges in adaptability and accuracy. To tackle this, a machine learning‐based modeling approach is proposed that integrates an adaptive immune genetic algorithm with random forest (RF) to intelligently select process features as input variables for RF modeling. The industrial result indicates that the proposed method is able to remove interfering variables and adaptively achieve optimal model precision for different scenarios. It offers a novel research instrument for product quality monitoring in natural gas sweetening plants.

Funder

Central University Basic Research Fund of China

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Opportunistic Reflection in Reconfigurable Intelligent Surface-Assisted Wireless Networks;2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC);2023-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3