In situ nanofibrillar composite fiber: A model system for understanding the structural evolution of crosslinked nanofibrils

Author:

Wang Jicheng1,Zhang Luotao1,Hu Haibin1,Li Jiawei1ORCID,Qi Dongming12

Affiliation:

1. Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou Zhejiang China

2. Laboratory of Functional Coating Zhejiang Provincial Innovation Center of Advanced Textile Technology Shaoxing Zhejiang China

Abstract

AbstractIn situ formed nanofibrils, which are formed from the deformation of dispersed phase polymer during the shearing/stretching process, offer exciting opportunities for large scale manufacture of materials with high strength and toughness. However, how the topological structure, especially crosslinking network structure of dispersed phase polymer, affects the structural evolution of nano/microfibrils is remaining unclear. Here, the nanofibrillar morphology of nanofibrillar composite fibers is manipulated via controlling the crosslinking network structure of dispersed phase. By changing the length of crosslinker and mol ratio of crosslinkers, the diameter of nanofibrils can be controlled. The rheological property of the crosslinked microspheres and corresponding morphology of in situ formed nanofibrils confirm that the inhomogeneous crosslinking network shows lower storage modulus and consistency coefficient, leading to higher deformation adaptability of crosslinking network and smaller diameter of the nanofibrils. The distribution of nanofibrils along the axial direction of composite fiber greatly improved the tensile strength and toughness of composite fiber to 74 MPa and 719 MJ/m3, which are 45% and 180% increasement compared with the counterpart pure PMMA fiber. The findings in current study provide a new strategy to control the nanofibrillar morphology by increasing the heterogeneity of crosslinking network structure of the dispersed phase polymer.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3