Estimation and evaluation of individualized treatment rules following multiple imputation

Author:

Shen Jenny1ORCID,Hubbard Rebecca A.1ORCID,Linn Kristin A.1

Affiliation:

1. Department of Biostatistics, Epidemiology, and Informatics Perelman School of Medicine, University of Pennsylvania Philadelphia Pennsylvania USA

Abstract

An individualized treatment rule (ITR) is a function that inputs patient‐level information and outputs a recommended treatment. An important focus of precision medicine is to develop optimal ITRs that maximize a population‐level distributional summary. However, guidance for estimating and evaluating optimal ITRs in the presence of missing data is limited. Our work is motivated by the Social Incentives to Encourage Physical Activity and Understand Predictors (STEP UP) study. Participants were randomized to a control or one of three interventions designed to increase physical activity and were given wearable devices to record daily steps as a measure of physical activity. Many participants were missing at least one daily step count during the study period. In the primary analysis of the STEP UP trial, multiple imputation (MI) was used to address missingness in daily step counts. Despite ubiquitous use of MI in practice, it has been given relatively little attention in the context of personalized medicine. We fill this gap by describing two frameworks for estimation and evaluation of an optimal ITR following MI and assessing their performance using simulated data. One framework relies on splitting the data into independent training and testing sets for estimation and evaluation, respectively. The other framework estimates an optimal ITR using the full data and constructs an ‐out‐of‐ bootstrap confidence interval to evaluate its performance. Finally, we provide an illustrative analysis to estimate and evaluate an optimal ITR from the STEP UP data with a focus on practical considerations such as choosing the number of imputations.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3