Human Multipotent Stromal Cell Secreted Effectors Accelerate Islet Regeneration

Author:

Kuljanin Miljan12,Elgamal Ruth M.23,Bell Gillian I.2,Xenocostas Anargyros4,Lajoie Gilles A.1,Hess David A.23ORCID

Affiliation:

1. Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada

2. Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada

3. Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

4. Department of Medicine, Division of Haematology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

Abstract

Abstract Human multipotent stromal cells (hMSC) can induce islet regeneration after transplantation via the secretion of proteins that establish an islet regenerative niche. However, the identity of hMSC-secreted signals and the mechanisms by which pancreatic islet regeneration is induced remain unknown. Recently, mammalian pancreatic α-cells have been shown to possess considerable plasticity, and differentiate into β-like cells after near complete β-cell loss or overexpression of key transcriptional regulators. These studies have generated new excitement that islet regeneration during diabetes may be possible if we can identify clinically applicable stimuli to modulate these key regulatory pathways. Herein, we demonstrate that intrapancreatic-injection of concentrated hMSC-conditioned media (CM) stimulated islet regeneration without requiring cell transfer. hMSC CM-injection significantly reduced hyperglycemia, increased circulating serum insulin concentration, and improved glucose tolerance in streptozotocin-treated mice. The rate and extent of endogenous β-cell mass recovery was dependent on total protein dose administered and was further augmented by the activation of Wnt-signaling using GSK3-inhibition during CM generation. Intrapancreatic hMSC CM-injection immediately set in motion a cascade of regenerative events that included the emergence of proliferating insulin+ clusters adjacent to ducts, NKX6.1 expression in glucagon+ cells at days 1–4 suggesting the acquisition of β-cell phenotype by α-cells, and accelerated β-cell maturation with increased MAFA-expression for >1 month postinjection. Discovery and validation of islet regenerative hMSC-secreted protein may lead to the development of cell-free regenerative therapies able to tip the balance in favor of β-cell regeneration versus destruction during diabetes. Stem Cells  2019;37:516–528

Funder

Sheldon H. Weinstein Chair in Diabetes Research

Juvenile Diabetes Research Foundation United States of America

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3