A gene expression control technology for cell‐free systems and synthetic cells via targeted gene silencing and transfection

Author:

Sato Wakana1,Rasmussen Melanie1,Gaut Nathaniel1,Devarajan Mahima1,Stokes Kaitlin1,Deich Christopher1,Engelhart Aaron E.1,Adamala Katarzyna P.1ORCID

Affiliation:

1. Department of Genetics, Cell Biology and Development University of Minnesota Minneapolis Minnesota USA

Abstract

AbstractSynthetic cells, expressing proteins using cell‐free transcription‐translation (TXTL), is a technology utilized for a variety of applications, such as investigating natural gene pathways, metabolic engineering, drug development or bioinformatics. For all these purposes, the ability to precisely control gene expression is essential. Various strategies to control gene expression in TXTL have been developed; however, further advancements on gene‐specific and straightforward regulation methods are still needed. Here, we present a method of control of gene expression in TXTL using a “silencing oligo”: a short oligonucleotide, designed with a particular secondary structure, that binds to the target messenger RNA. We demonstrated that silencing oligo inhibits protein expression in TXTL in a sequence‐dependent manner. We showed that silencing oligo activity is associated with RNase H activity in bacterial TXTL. To complete the gene expression control toolbox for synthetic cells, we also engineered a first transfection system. We demonstrated the transfection of various payloads, enabling the introduction of RNA and DNA of different lengths to synthetic cell liposomes. Finally, we combined the silencing oligo and the transfection technologies, demonstrating control of gene expression by transfecting silencing oligo into synthetic minimal cells.

Funder

National Aeronautics and Space Administration

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3