Tail risk forecasting with semiparametric regression models by incorporating overnight information

Author:

Chen Cathy W. S.1ORCID,Koike Takaaki2,Shau Wei‐Hsuan1

Affiliation:

1. Department of Statistics Feng Chia University Taichung Taiwan

2. Graduate School of Economics Hitotsubashi University Tokyo Japan

Abstract

AbstractThis research incorporates realized volatility and overnight information into risk models, wherein the overnight return often contributes significantly to the total return volatility. Extending a semiparametric regression model based on asymmetric Laplace distribution, we propose a family of RES‐CAViaR‐oc models by adding overnight return and realized measures as a nowcasting technique for simultaneously forecasting Value‐at‐Risk (VaR) and expected shortfall (ES). We utilize Bayesian methods to estimate unknown parameters and forecast VaR and ES jointly for the proposed model family. We also conduct extensive backtests based on joint elicitability of the pair of VaR and ES during the out‐of‐sample period. Our empirical study on four international stock indices confirms that overnight return and realized volatility are vital in tail risk forecasting.

Funder

National Science and Technology Council

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3