Hybrid machine learning‐based breast cancer segmentation framework using ultrasound images with optimal weighted features

Author:

Vijayan Sudharsana1ORCID,Panneerselvam Radhika1ORCID,Roshini Thundi Valappil2

Affiliation:

1. Department of Electronics and Communication Engineering College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur Chengalpattu Tamil Nadu India

2. Department of Electronics and Communication Engineering Vimal Jyothi Engineering College, Chemperi Kannur Kerala India

Abstract

AbstractOne of the most dangerous conditions in clinical practice is breast cancer because it affects the entire life of women in recent days. Nevertheless, the existing techniques for diagnosing breast cancer are complicated, expensive, and inaccurate. Many trans‐disciplinary and computerized systems are recently created to prevent human errors in both quantification and diagnosis. Ultrasonography is a crucial imaging technique for cancer detection. Therefore, it is essential to develop a system that enables the healthcare sector to rapidly and effectively detect breast cancer. Due to its benefits in predicting crucial feature identification from complicated breast cancer datasets, machine learning is widely employed in the categorization of breast cancer patterns. The performance of machine learning models is limited by the absence of a successful feature enhancement strategy. There are a few issues that need to be handled with the traditional breast cancer detection method. Thus, a novel breast cancer detection model is designed based on machine learning approaches and employing ultrasonic images. At first, ultrasound images utilized for the analysis is acquired from the benchmark resources and offered as the input to preprocessing phase. The images are preprocessed by utilizing a filtering and contrast enhancement approach and attained the preprocessed image. Then, the preprocessed images are subjected to the segmentation phase. In this phase, segmentation is performed by employing Fuzzy C‐Means, active counter, and watershed algorithm and also attained the segmented images. Later, the segmented images are provided to the pixel selection phase. Here, the pixels are selected by the developed hybrid model Conglomerated Aphid with Galactic Swarm Optimization (CAGSO) to attain the final segmented pixels. Then, the selected segmented pixel is fed in to feature extraction phase for attaining the shape features and the textual features. Further, the acquired features are offered to the optimal weighted feature selection phase, and also their weights are tuned tune by the developed CAGSO. Finally, the optimal weighted features are offered to the breast cancer detection phase. Finally, the developed breast cancer detection model secured an enhanced performance rate than the classical approaches throughout the experimental analysis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3