Traffic flow prediction: A 3D adaptive multi‐module joint modeling approach integrating spatial‐temporal patterns to capture global features

Author:

Ul Abideen Zain1,Sun Xiaodong1,Sun Chao1

Affiliation:

1. Automotive Engineering Research Institute Jiangsu University Zhenjiang Jiangsu China

Abstract

AbstractThe challenges in citywide traffic flow are intricate, encompassing various factors like temporal and spatial dependencies, holidays, and weather. Despite the complexity, there are still research gaps in effectively incorporating these spatio‐temporal relations through deep learning. Addressing these gaps is crucial for tackling issues such as traffic congestion, public safety, and efficient traffic management within cities. This paper underscores notable research gaps, including the development of models capable of handling both local and global traffic flow patterns, integrating multi‐modal data sources, and effectively managing spatio‐temporal dependencies. In this paper, we proposed a novel model named 3D spatial–temporal‐based adaptive modeling graph convolutional network (3D(STAMGCN)) that addresses for traffic flow data in better periodicity modeling. In contrast to earlier studies, 3D(STAMGCN) approaches the task of traffic flow prediction as a periodic residual learning problem. This is achieved by capturing the input variation between historical time segments and the anticipated output for future time segments. Forecasting traffic flow, as opposed to a direct approach, is significantly simpler when focusing on learning more stationary deviations. This, in turn, aids in the training of the model. Nevertheless, the networks enable residual generation at each time interval through learned variations between future conditions and their corresponding weekly observations. Consequently, this significantly contributes to achieving more accurate forecasts for multiple steps ahead. We executed extensive experiments on two real‐world datasets and compared the performance of our model to state‐of‐the‐art (SOTA) techniques.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3