Src family kinases engage differential pathways for encapsulation into extracellular vesicles

Author:

Ye Chenming1,Gosser Cade1,Runyon Ethan Daniel1,Zha Junyi1,Cai Jingwen2,Beharry Zanna3,Bowes Rickman Catherine45,Klingeborn Mikael4ORCID,Liu Yutao2,Xie Jin6,Cai Houjian1ORCID

Affiliation:

1. Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy University of Georgia Athens Athens Georgia USA

2. Department of Cellular Biology and Anatomy Augusta University Augusta Georgia USA

3. Department of Chemical and Physical Sciences University of Virgin Islands USA

4. Department of Ophthalmology Duke University Durham North Carolina USA

5. Department of Cell Biology Duke University Durham North Carolina USA

6. Department of Chemistry University of Georgia Athens Athens Georgia USA

Abstract

AbstractExtracellular vesicles (EVs) are heterogeneous biological nanoparticles secreted by all cell types. Identifying the proteins preferentially encapsulated in secreted EVs will help understand their heterogeneity. Src family kinases including Src and Fyn are a group of tyrosine kinases with fatty acylation modifications and/or multiple lysine residues (contributing charge interaction) at their N‐terminus. Here, we demonstrate that Src and Fyn kinases were preferentially encapsulated in EVs and fatty acylation including myristoylation and palmitoylation facilitated their encapsulation. Genetic loss or pharmacological inhibition of myristoylation suppressed Src and/or Fyn kinase levels in EVs. Similarly, loss of palmitoylation reduced Fyn levels in EVs. Additionally, mutation of lysine at sites 5, 7, and 9 of Src kinase also inhibited the encapsulation of myristoylated Src into EVs. Knockdown of TSG101, which is a protein involved in the endosomal sorting complexes required for transport (ESCRT) protein complex mediated EVs biogenesis and led to a reduction of Src levels in EVs. In contrast, filipin III treatment, which disturbed the lipid raft structure, reduced Fyn kinase levels, but not Src kinase levels in EVs. Finally, elevated levels of Src protein were detected in the serum EVs of host mice carrying constitutively active Src‐mediated prostate tumours in vivo. Collectively, the data suggest that different EVs biogenesis pathways exist and can regulate the encapsulation of specific proteins into EVs. This study provides an understanding of the EVs heterogeneity created by different EVs biogenesis pathways.

Funder

National Cancer Institute

American Institute for Cancer Research

U.S. Department of Defense

Georgia Research Alliance

National Institute of Allergy and Infectious Diseases

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3