Control of particulate manganese (Mn) cycling in halocline Arctic Ocean waters by putative Mn‐oxidizing bacterial dynamics

Author:

Colombo Manuel1ORCID,LaRoche Julie2ORCID,Desai Dhwani2,Li Jingxuan1,Maldonado Maria T.1

Affiliation:

1. Department of Earth, Ocean, and Atmospheric Sciences University of British Columbia British Columbia Canada

2. Department of Biology Dalhousie University Halifax Nova Scotia Canada

Abstract

AbstractParticulate Mn, given its high adsorptive capacity and oxidation potential, has profound impacts on the cycling of various trace elements and organic matter in the ocean. Moreover, particulate Mn acts as a sink (via oxidation and adsorption) or as a source (via remineralization and photoreduction) term of bioactive dissolved Mn(II). In the Canadian Arctic Ocean, particulate Mn distributions in the water column revealed the presence of distinctively high particulate Mn concentrations and an overwhelming dominance of the non‐lithogenic component to the bulk particulate Mn pool. This phenomenon is of particular importance in halocline waters in the Canada Basin, the Canadian Arctic Archipelago and Baffin Bay, and near‐bottom samples in Baffin Bay. Enhanced microbially‐mediated Mn oxidation in the water column is suggested as the main mechanism driving the non‐lithogenic dominance. Indeed, the microbial community composition data associated with high non‐lithogenic particulate Mn (i.e., Mn oxides) display a high relative abundance of taxa (e.g., f.Pirellulaceae, o.Phycisphaerales, f.Cryomorphaceae, g. Moritella) that have been identified in Mn oxide enriched environments. Furthermore, numerous taxa identified in the Canada Basin halocline water, where non‐lithogenic particulate Mn peaked, are phylogenetically related to known (cultured) Mn‐oxidizing bacteria (MnOB; e.g., Rhodobacteraceae, Oceanospirillaceae, Rhizobiaceae, and other Alphaproteobacteria). Putative MnOB appears to proliferate in certain water masses having a unique set of environmental conditions: low light intensity—alleviating photoinhibition—and high dissolved Mn concentrations, the main drivers known to influence MnOB dynamic, and hence, Mn oxidation.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3