Effect of marine sediment on the phase partitioning and isotopic content of riverine DOC

Author:

Hauksson Niels1ORCID,Lewis Christian B.12ORCID,Komada Tomoko3ORCID,Druffel Ellen R. M.1ORCID

Affiliation:

1. Earth System Science Department University of California Irvine California USA

2. National Isotope Centre GNS Science Lower Hutt New Zealand

3. Estuary and Ocean Science Center San Francisco State University Tiburon California USA

Abstract

AbstractRivers discharge significant quantities of dissolved organic carbon (DOC) to the ocean, yet biomarker and isotope studies suggest that terrigenous DOC makes up only a small amount DOC in the ocean. One of the removal pathways proposed for riverine DOC is sorption to marine sediments. This process is chemically selective, but whether sorption alters the isotopic composition of riverine DOC is unknown. Because there is isotopic variability across different organic compound classes, sorptive removal of DOC could also alter the isotopic composition of DOC. As a first step in addressing this question, we examined phase partitioning and isotopic composition of a riverine DOC standard in the presence of marine sediment particles. In a series of controlled experiments, the standard was mixed with marine sediment in 35‰ NaCl solution, then separated into particulate and dissolved phases for analyses of mass, δ13C, and ∆14C of organic carbon (OC). Across a range of sediment OC to DOC mass ratios (from < 0.1 to ~ 3), we found that: (1) sediment sorbed 0.8 μg OC per mg of sediment; and (2) DOC compounds with higher ∆14C and lower δ13C values relative to the bulk DOC was preferentially removed from solution. In effect, mixing a riverine DOC standard with marine sediment resulted in increased ∆14C and decreased δ13C of the DOC that remained in solution. These results show that sorption of DOC to sediment can alter the isotopic content of riverine DOC.

Funder

National Science Foundation

Publisher

Wiley

Subject

Aquatic Science,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3