Polymeric Benzothiadiazole, Benzooxadiazole, and Benzoselenadiazole Photocathodes for Photocatalytic Oxygen Reduction to Hydrogen Peroxide

Author:

Gańczarczyk Roman12,Rybakiewicz‐Sekita Renata13ORCID,Gryszel Maciej1ORCID,Drapała Jakub1ORCID,Zagórska Małgorzata1ORCID,Głowacki Eric Daniel12ORCID

Affiliation:

1. Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00–664 Warsaw Poland

2. Bioelectronics Materials and Devices Lab Central European Institute of Technology Brno University of Technology Purkyňova 123 61200 Brno Czech Republic

3. Faculty of Mathematics and Natural Sciences School of Sciences Institute of Chemical Sciences Cardinal Stefan Wyszyński University in Warsaw Wóycickiego 1/3 01–815 Warsaw Poland

Abstract

AbstractVisible‐light‐driven semiconductor photoelectrodes are promising new devices for on‐demand photocathodic generation of hydrogen peroxide. Herein, the fabrication of organic polymeric photocathodes employing poly(4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole) (pThBTD), and comparatively seven other related derivatives is reported. The monomer dithienobenzodithiazole can be directly polymerized on an electrode via two methods: electropolymerization or iodine‐vapor‐assisted polymerization. Both give polymers with wide visible light absorption and suitable stability for photoelectrodes. These methods yield different active layer morphologies, with electropolymerization yielding photocathodes with better performance. Critical issues affecting oxygen reduction photocurrents are evaluated, namely thickness, wettability, and pH. Photocathodic oxygen reduction currents, as well as photovoltages, are among the highest reported for an organic photoelectrocatalyst, and pThBTD films can stably produce H2O2 with high faradaic yield over at least 8 h. This study shows that single‐component organic semiconductor devices can be highly competitive versus more complex heterostructures and that such low‐bandgap organic polymers can afford remarkable stability.

Funder

Narodowe Centrum Nauki

European Research Council

Grantová Agentura České Republiky

H2020 European Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3