Plasma‐Etched Nanograss Surface without Lithographic Patterning to Immobilize Water Droplet for Highly Sensitive Raman Sensing

Author:

Ho Hsiuan Ling1,Yang Jung Yen2,Lin Chun Hung3ORCID,Shieh Jiann1ORCID,Fang Huang Yu1,Ho Yi Hong1,Ko Tsung Shine4ORCID,Hsu Chiung Chih2,Ostrikov Kostya (Ken)5ORCID

Affiliation:

1. Department of Materials Science and Engineering National United University Miaoli 36063 Taiwan

2. Taiwan Semiconductor Research Institute Hsinchu 300091 Taiwan

3. Department of Photonics National Cheng Kung University Tainan 701 Taiwan

4. Department of Electronic Engineering National Changhua University of Education Changhua 50074 Taiwan

5. School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology Brisbane QLD 4000 Australia

Abstract

AbstractThe development of reliable, cost‐effective molecular detection at the attomolar level on analyte‐immobilizing surfaces fabricated without lithographic patterning remains a major challenge in chemical sensing technology. This issue is addressed using custom‐designed adhesive superhydrophobic silicon nanograss surfaces produced via plasma etching. When applied to ultrasensitive surface‐enhanced Raman scattering, the nanograss surface enables effective immobilization of water droplets containing Ag nanoparticles and R6G target molecules. Upon water evaporation, the R6G analytes are confined at the edge of the self‐organized coffee‐ring‐like stains with the plasmonic hot spots of the Ag nanoparticles, thus providing a reliable Raman scattering platform for detecting trace analytes. Even at an ultralow concentration of 10−16 m, the corresponding relative standard deviation is 17.57%. A novel plasma‐enabled approach for precise interface nanostructuring, potentially leading to unprecedented capabilities in molecular‐level sensing technologies, is presented.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3