Directly Coated Iridium Nickel Oxide on Porous‐Transport Layer as Anode for High‐Performance Proton‐Exchange Membrane Water Electrolyzers

Author:

Kang Sun Young12,Park Ji Eun3,Jang Ga Young4,Choi Changsoon3,Cho Yong‐Hun14ORCID,Sung Yung‐Eun12ORCID

Affiliation:

1. Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea

2. School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea

3. Department of Energy and Materials Engineering Dongguk University Seoul 04620 Republic of Korea

4. Department of Chemical Engineering Kangwon National University Samcheok Gangwon‐do 25913 Republic of Korea

Abstract

AbstractDeveloping a high‐performance anode design is important for a low‐cost proton‐exchange membrane water electrolyzer (PEMWE). In this study, an iridium nickel oxide directly coated anode (IrNiOx electrode) for high‐efficient PEMWE is reported. Five IrNiOx electrodes with different Ir‐to‐Ni ratios are developed using co‐electrodeposition. The resulting electrodes contain a thin IrNiOx layer on the carbon substrate. To develop the PEMWE incorporating IrNiOx electrode, the effect of fabrication methods, catalyst compositions, and porous transport layer are investigated. Consequently, the IrNiOx electrode prepared with 7:3 precursor solution (Ir0.5Ni0.5Ox) exhibits higher oxygen evolution reaction activity with a smaller overpotential than the electrode prepared with 10:0 precursor solution (IrOx) and the commercial IrO2. Furthermore, the performance of the PEMWE is higher with the Ir0.5Ni0.5Ox electrode than that with the sprayed electrode with commercial IrO2 nanoparticles. This enhancement is attributed to the high electrochemical surface area caused by introducing Ni in IrOx. Additionally, the performance of the directly coated Ir0.5Ni0.5Ox PEMWE is the highest reported in the literature.

Funder

Korea Research Council for Industrial Science and Technology

National Research Foundation of Korea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3