Crystalline Silicon Photocathode with Tapered Microwire Arrays Achieving a High Current Density of 41.7 mA cm⁻2

Author:

Jin Wonjoo1ORCID,Lee Youri1,Shin Changhwan1,Park Jeonghwan1,Jang Ji‐Wook123ORCID,Seo Kwanyong13ORCID

Affiliation:

1. School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulju‐gun Ulsan 44919 Republic of Korea

2. Emergent Hydrogen Technology R&D Center Ulsan National Institute of Science and Technology (UNIST) Ulju‐gun Ulsan 44919 Republic of Korea

3. Graduate School of Carbon Neutrality Ulsan National Institute of Science and Technology (UNIST) Ulju‐gun Ulsan 44919 Republic of Korea

Abstract

AbstractTo design a high‐efficiency crystalline silicon (c‐Si) photocathode, the photovoltage and photocurrent generated by the device must be maximized because these factors directly affect the hydrogen evolution reaction (HER). In this study, a c‐Si p–n junction is used to enhance the photovoltage of the c‐Si photocathode, and a tapered microwire array structure is introduced to increase the photocurrent. When tapered microwire arrays are employed on the front surface of the c‐Si photocathode, a current density of ≈41.7 mA cm2 is achieved at 0 VRHE (reversible hydrogen electrode); this current density is the highest among all reported photocathodes including c‐Si, approaching the theoretical maximum value for c‐Si. Furthermore, a Ni foil/Pt catalyst is introduced on the opposite side of the incident light, simultaneously serving as an electrocatalyst to reduce side reactions in the HER and encapsulation layer to prevent c‐Si from contacting the electrolyte. Thus, a stable device is developed using c‐Si photoelectrochemical cells that have an efficiency exceeding 97% for >1000 h.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3