Affiliation:
1. School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulju‐gun Ulsan 44919 Republic of Korea
2. Emergent Hydrogen Technology R&D Center Ulsan National Institute of Science and Technology (UNIST) Ulju‐gun Ulsan 44919 Republic of Korea
3. Graduate School of Carbon Neutrality Ulsan National Institute of Science and Technology (UNIST) Ulju‐gun Ulsan 44919 Republic of Korea
Abstract
AbstractTo design a high‐efficiency crystalline silicon (c‐Si) photocathode, the photovoltage and photocurrent generated by the device must be maximized because these factors directly affect the hydrogen evolution reaction (HER). In this study, a c‐Si p–n junction is used to enhance the photovoltage of the c‐Si photocathode, and a tapered microwire array structure is introduced to increase the photocurrent. When tapered microwire arrays are employed on the front surface of the c‐Si photocathode, a current density of ≈41.7 mA cm−2 is achieved at 0 VRHE (reversible hydrogen electrode); this current density is the highest among all reported photocathodes including c‐Si, approaching the theoretical maximum value for c‐Si. Furthermore, a Ni foil/Pt catalyst is introduced on the opposite side of the incident light, simultaneously serving as an electrocatalyst to reduce side reactions in the HER and encapsulation layer to prevent c‐Si from contacting the electrolyte. Thus, a stable device is developed using c‐Si photoelectrochemical cells that have an efficiency exceeding 97% for >1000 h.
Funder
National Research Foundation of Korea